Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong
نویسندگان
چکیده
Air pollution emerges as an imminent issue in metropolitan cities like Hong Kong, and attracts much attention in recent years. Prediction of pollutant levels and their tendency is an important topic in environmental science today. To achieve such prediction tasks, the use of neural network (NN), in particular, the multi-layer perceptron, is regarded as a cost-e7ective technique superior to traditional statistical methods. But the training of the multi-layer perceptron, normally featured with back-propagation (BP) algorithm or other gradient algorithms, still faces certain drawbacks, e.g., very slow convergence, easily getting stuck in a local minimum, etc. In this paper, a newly developed method, particle swarm optimization (PSO) model, is adopted to train the perceptron and to predict the pollutant levels. As a result, a new neural network model, PSO-based approach, is established and completed. The approach is proved to be feasible and e7ective by applying to some real air-quality problems and by comparing with the simple BP algorithm. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends.
Monitoring and forecasting of air quality parameters are popular and important topics of atmospheric and environmental research today due to the health impact caused by exposing to air pollutants existing in urban air. The accurate models for air pollutant prediction are needed because such models would allow forecasting and diagnosing potential compliance or non-compliance in both short- and l...
متن کاملMachine learning algorithms for predicting roadside fine particulate matter concentration level in Hong Kong Central
Data mining is an approach to discover knowledge from large data. Pollutant forecasting is an important problem in the environmental sciences. This paper tries to use data mining methods to forecast fine particles (PM2.5) concentration level in Hong Kong Central, which is a famous business centre in Asia. There are several classification algorithms available in data mining, such as Artificial N...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملThe Contribution of Ageing to Hospitalisation Days in Hong Kong: A Decomposition Analysis
Background Ageing has become a serious challenge in Hong Kong and globally. It has serious implications for health expenditure, which accounts for nearly 20% of overall government expenditure. Here we assess the contribution of ageing and related factors to hospitalisation days in Hong Kong. We used hospital discharge data from all publicly funded hospitals in Hong Kong between 2001 and 2012. ...
متن کاملComparison of Three Classification Algorithms for Predicting Pm2.5 in Hong Kong Rural Area
Data mining is an approach to discover knowledge from large data. Pollutant forecasting is an important problem in the environmental sciences. This paper tries to use data mining methods to forecast fine particles (PM2.5) concentration level in a new town of Hong Kong rural area. There are several classification algorithms available in data mining, such as Artificial Neural Network (ANN), Boost...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 51 شماره
صفحات -
تاریخ انتشار 2003